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Decomposition Techniques for Temporal
Resource Allocation

Cynara C. Wu and David A. Castafion

networks [5]. They have been used to schedule test
Abstract-We consider the problem of allocating a set of operations by decomposing the problem according to

heterogeneous resources with availability constraints to available work centers [4]. Work has also been done in
maximize a given value function. The problem arises In a wide developing novel heuristics for decomposing problems such
variety of military and industrial situations. We formulate the the Constraint Satisfaction Problem [2]. We present a
problem as a discrete-state decision process. We consider two I
instances of the problem that is applicable in situations where straightforward approach based on decomposing the
persistent coverage over all stages is desired. While we were problem according to the available resources and solving
able to solve the first example using dynamic programming, the sub-problems using dynamic programming. While this
the computational requirements are significant and not approach has very likely been applied to combinatorial
scalable to larger instances. We consider an approximate problems, we are unaware of specific applications based on
technique using decomposition combined with dynamic
programming. Our experiments show that this approach dynamic programming for resource allocation problems.
requires very little computation time and produces near- The paper is organized as follows. In Section HI, we
optimal results for the examples considered, formulate the problem. In Section III, we describe the

dynamic programming solution to the problem. In Section
I. INTRODUCTION IV, we describe the approximate solution based on

T E allocation over time of heterogeneous resources decomposition. In Sections V and VI, we illustrate the
with availability constraints -is a -problem that has solutions using two examples and present some

applications in manufacturing, telecommunications, the computational results.
military, and other areas. Examples include - allocating
different machines with re 1i6ired downtimeslto jobs, as well 1I. PROBLEM FORMULATION
as allocating vehicles with various capabilities and fuel We assume a set of R resources that are to be allocated to
limitations to different geographic areas to perform tasks. M groups over N stages. Resource i is available for up to ti
The majority of such problems are known to be NP-hard consecutive stages, at which point it is not available again
and numerous approximation techniques have been until a minimum of si consecutive stages has passed. Fig. I
developed to solve them.

We consider an approximate solution based on provides asampleallocationschedule.
decomposition. Decomposition approaches have been used
to approximately solve a variety of hard combinatorial Iu/Alu/AI I I 1 I 1 1 2 I 2 1 1 IU/AlU/Ai 2 I1
problems, including resource allocation and scheduling po.
problems. They have been combined in a straightforward Max # consecutive o i StagesMax # onsective -•in #cons~e- Sae

manner with sub-gradient and cutting-plane methods to available stages = ti cutive unavail-

solve simultaneous routing and resource allocation in able stages= Si

wireless networks [3]. They have been combined with
feature extraction for admission control in wireless Figure 1 Allocation schedule where resource i is

unavailable for 4 stages, and allocated to groups 1 and 2

Manuscript received March 5, 2004. (Sponsor and financial supp for 5 and 3 stages, respectively.
acknowledgment will go here). The objective is to allocate resources subject to each
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values attained during each stage and these values depend max g(x)
only on the states and decisions over each of the stages. We subject to Ax < b
also assume that there is no cost in changing the allocation where xj -1 when resource i has been allocated to group j
of one resource from one group to another between stages. .

This problem can be formulated as a deterministic finite- during stage k and where A imposes the availability

horizon, discrete-state decision process. The state at stage k constraints for the resources. One possible approach to

is represented by a vector Xk = (Xkl, Xk2 ... I XkR ý), where solving this problem is to enumerate all of the combinations
'of possible decision sets. However, the number of

xki is an ordered pair that provides the availability and of pvr

group information for resource i at stage k. Specifically, if combinations is approximately + 1)R . Although the

resource i has been made available for stages k-n through k, dynamic programming solution described below is also

was not available at stage k-n-I, and has been allocated to exponential, its computational requirements are

group m during stage k, then we have significantly smaller.

xki = (X I, x.= (n,m). In addition, if resource i has been III. DYNAMIC PROGRAMMING SOLUTION

made unavailable for stages k-n through k and was available The decision process formulated in the previous section
at stage k-n-i, then we have xki = (min(O, n - si),O). In the can be solved exactly using dynamic programming. (See [1]

former case, the first element of vector xti is the number of for a detailed treatment of this topic.) Let Jk (Xk) denote

stages for which resource i has been made available. In the the optimal value-to-go, or value that can be attained

latter case, the first element of vectorxki is the number of starting at state Xk at stage k. The value for every possible

stages until resource i will again be available, state for the last stage is simply JN (XN) = gN(Xt,).

The decision vector Uk =(Ukl,u,2 .... I UkR indicates Assuming we have the value-to-go for every possible state

which resources will be available to which groups during for the (k+l)st stage, we can determine the optimal

stage k+ 1. In particular, we have decisions and the associated values-to-go for each possible

if resource i is to be available to state for the kth stage as follows. For each state, we
)= (,m) goconsider each possible decision and compute the sum of the

u (agki = - value attained over the current stage under the given

0 odecision and the value-to-go for the resulting state for stage
.(0,0) otherwise. k+ 1. The optimal decision and associated value-to-go for

The possible choices for each decision component depend the state is that with the maximum sum:
on the state at stage k. At any state, the decisions for any Jk(Xk)=max{gk(Xk,Uk)+Jk+l(fk(Xk,Uk)}.

resource include making the resource unavailable for the Uk

next stage. For states where xL. <ti, the decisions also At any stage, each resource can be in one ofsi unavailable states (since any state in which a resource
include allocating the resource to any of the M groups for h
the next stage. has been made unavailable for more than si stages is

The state for each individual resource evolves as follows: equivalent to the state in which the resource has been made

x(k+l)i = A (XkIuk) unavailable for exactly si stages), or in one of Mti available

(xI+1, M) ifuk = (1,ml m• {1,2,....M}, states. The number of states in this problem for a particular
kf R

= x(- si + 1,0) if uki = 0 and xji # 0, stage is therefore JJ(Mti + si). For any state, the number

I(i + 1,0) if u =Oandx=O. i=I

Given a set of value functions gk, the optimal set of of possible decisions is up to (M + 1)R, where the maximum

decisions is that which maximizes the value: number of decisions occurs when all resources can be made

N-I available for the next stage. The total number of decisions

gN(XN)+Egk(Xk,Uk)' to evaluate to compute the optimal solution is then

k=o approximately

Note that this problem can also be formulated as a ( R (Mi I/

general integer programming problem: rJ7(Mti +si) +1)R N. (1)

While complete enumeration is exponential in both the



number of resources and the number of stages, this
approach is only exponential in the number of resources. S
However, using dynamic programming to solve such 3 - S3
problems exactly is still impractical for problems with a _"
large number of resources, particularly if the problems need S1
to be solved in real-time. - ..

IV. DECOMPOSiTION APPROACH

Since the computation time for obtaining an exact
solution is exponential in the number of resources, a 0 .0. o U. o
straightforward approach to addressing the computational
limitations of exact dynamic programming is to decompose
the problem into sub-problems associated with the
individual resources. One application of this approach is to 0b0o ...... 0
consider each resource in turn and select an allocation
schedule for that resource by applying dynamic Figure 2 lllustration of a decomposition approach. Each
programming to determine the optimal solution for that resource, represented here as cylinders, Is considered In
individual resource assuming that the schedules for some given order and allocated one of its feasible
previously assigned resources are fixed and that there are no schedules. During the allocation of its schedule, two
additional resources to allocate, assumptions are made. First, remaining resources are

Let 0(i) provide the ordering in which the resources are allocated some pre-determined schedule, which in this

to be considered. We first consider resource 0(1), assume example is one in which they are never allocated.
Second, resources that have already been considered are

that all remaining resources are never made available, and fixed at the schedules previously determined. Any
determine the allocation schedule (XJ(o), X2 0 (o)..... X0o(,)) algorithm can be used to determine which of its feasible

that maximizes the value function schedules to allocate to a resource. Our proposed
N-I approach uses dynamic programming to determine the

gN(XN)+Egk(Xk,Uk). This allocation is then optimal schedule given the two assumptions.
k=o The number of states for the sub-problem associated with

assigned to resource 0(1). For each subsequent resource i is Mti + si. For each of these states, the number

resource 0(i), we assume that the schedules for of possible decisions is either 1 or M+I. The number of

resources 0(1), 0(2),..., 0(i- 1) are set to those previously decisions to evaluate to compute the optimal solution of the

computed and that the schedules for resources sub-problem associated with resource i is then bounded by

0(i),O(i+ 1),..., 0(M) are never made available, and (Mti + si)(M + 1)N, resulting in the number of decisions to

determine the allocation schedule (Xo0(i), X20 (i)..... XNO(i)) evaluate for the entire problem of
R

that maximizes the value function '[(Mti + si XM + 1)N]. (2)
N-i=

gN(XN)+Egk(Xk,Uk). A general decomposition Since the allocations of resources that have not been
k=0 assigned are not considered during the scheduling of a

approach in which the sub-problems can be solved using particular resource, the basic decomposition approach
any algorithm is illustrated in Fig. 1. described above is a greedy algorithm. In fact, this

approach is an example of an approximate dynamic
programming algorithm where the value-to-go for
unassigned resources is given an estimate of zero. As will
be seen in the example described in the following section,
this approach can obtain solutions that are very close to the
optimal. However, for certain value functions, approximate
dynamic programming approaches that provide more
accurate estimates of the value-to-go are likely to obtain

3



improved results. We are currently considering more
complex value functions in order to evaluate additional
approximate approaches.

V. EXAMPLE I Fue

The following example is motivated by a problem where
the main objective is to ensure that surveillance over a
single defined area of interest can be provided over an 1 2 3
entire scenario. Total Coverage

A. Example Details Figure 3 Value function for Example 1

In this example, the objective is to allocate 23 vehicles
over 36 stages to a single area of interest. The vehicles are
of 4 different types, each of which has a surveillance range B. Computational Results
that is some fraction of the total area of interest. Vehicles Note that vehicles of type 1 can be made available for up
carry a certain amount of fuel which allows them to patrol to 60 stages. Since this is greater than the length of the
in the area of interest for a certain amount of time. When scenario being considered and since the value function is
their fuel is low, they require a certain amount of downtime monotonically non-decreasing in the amount of coverage
in order to travel to a station to refuel. The objective is to available at any stage, any optimal solution would make
determine a schedule to indicate which vehicles are
available during which stages that maximizes a given value these vehicles available during each stage. Note also that
function. the vehicle of type 2 has such a large surveillance range that

The following table provides for each vehicle type the it can be shown that any optimal solution would limit the
number of available vehicles, the maximum number of total number of unavailable stages to 2. Since the value
consecutive stages each vehicle type is available before it function is uniform over all stages, it is straightforward to
needs to refuel, the minimum number of consecutive stages select a schedule for the vehicle of type 2 that would result
each vehicle type is unavailable after it heads to a station to in the optimal schedule. Therefore, finding the optimal
refuel, and the fraction of the total area of interest for which solution for this example reduces to finding the optimal
each vehicle type can provide surveillance coverage, schedule for vehicles of type 3 and 4.

Using (1), we see that to determine the optimal allocation

Table 1 Resource Data for Example 1 of vehicles of type 3 and 4 using dynamic programming, the
number of decisions that need to be evaluated is

Vehicle Number Max Min Coverage (R
Type Availability Off-Time Provided H (ti +si) (2)RN = (24 .39 2)" (36)= 90.7 billion.

1 9 60 1 1/240 =
2 1 13 1 1 Using (2), we see that to determine the allocation of
3 4 1 1 0.5 vehicles of type 3 and 4 using vehicle decomposition with
4 9 2 1 0.125 dynamic programming, the number of decisions that need to

be evaluated is
Since the objective of the problem is to provide sufficient R

surveillance at all times, we selected a value function that is L[(ti + si). 2]N =(9.3.2+4.2.2).36= 2520.
independent of the stage and is monotonically non- i=1
decreasing in the total amount of coverage that could be The results of applying the two approaches and their
provided by the vehicles allocated to a stage. In addition, computational requirements are displayed in the following
the slope of the value function is greatest when the fraction table. The algorithm was implemented in C on a Pentium
of the coverage is less than 1 and decreases again when the 1.8 MHz processor. As can be seen, the decomposition
fraction of coverage is greater than 1.5 and greater than 3. approach obtains a schedule with a value that is within
The decrease in slope as the fraction of coverage increases 0. 1% of the optimal solution and requires approximately 6
represents the decrease of importance of additional orders of magnitude less computation time.
coverage when certain amounts of coverage have been
reached. The function we selected is illustrated in the Fig. 2.
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Table 2 Computational Results for Example 1 decisions that need to be evaluated to obtain a solution
Solution Value Number of Computation using vehicle decomposition with dynamic programming is

Approach Decisions Time [(4.5 + 3). 5.12]. 16 = 22080.

Exact DP 396.52 90.7 68 minutes, At the time of this submission, we have implemented a

billion 4080 sec vehicle decomposition approach using pruned enumeration

Decomposition 396.22 2520 0.002 seconds instead of dynamic programming. This approach compares
a subset of all possibilities to solve the vehicle sub-

VI. EXAMPLE 2 problems. The number of combinations considered was

The next example is motivated by a problem where the approximately 6000 for each vehicle, yielding a total of
approximately 96000 total evaluations. The possibilitiesmain objective is to maintain persistent coverage over ta eepue rmteetr erhsaeicue

several geographic areas of interest to ensure that time-

sensitive targets can be attacked within the required time those where vehicles were not made available for extended

window, periods of time and those in which vehicles were allowed to
move from one area of responsibility to another during a

A. Example Details particular availability period. We expect that the solutions

In this example, the objective is to allocate 16 vehicles for the sub-problems using dynamic programming will not
over 12 stages to 4 areas of responsibility in a manner that vary much from those obtained under this approach.
maximizes the expected value of targets that can be The vehicle decomposition approach was able to obtain
destroyed. The vehicles are of two types and are an approximate solution in 1.3 seconds that yielded a higher
distinguished by the number of munitions they can carry. expected value than any solution obtained using the
The munitions are of two types and are distinguished by commercial product CPLEX after several hours. The value
their probabilities of destroying various targets. Table 3 obtained as a function of time is illustrated in the following
provides the availability and munitions data for each vehicle figure. We expect that the vehicle decomposition approach
type. with dynamic programming will yield similar values using

less computation time.

Table 3 Resource Data for Example 2

Vehicle Number Max Min Type I Type 2
Type Avail Off-Time Weapons Weapons 4W PQol0 7

1 8 5 3 4 2
2 8 5 3 2 1 Value 3w

200

The targets are also of two types: high value, time- 0
sensitive targets that appear during each stage and can only :
be destroyed during that stage, and low value, non-time-
sensitive targets that appear at the beginning of the first *0r 5Ma c)M 150 23

stage and remain until they are destroyed. The value The(se)

attained during a particular stage was the expected value of
destroyed targets if the allocated munitions were optimally Figure 4 Value attained as a function of time.
assigned to the two types of targets.

Using (1), we see that to determine the number of
decisions that need to be evaluated to obtain the dynamic VII. CONCLUSION
programming solution is We have formulated the problem of allocating

(4.5+3)"6.(5)"6.12=(115)16.1212.1034, heterogeneous resources with availability constraints over
time and space as a finite-state decision process and

which is too large to compute. We instead also formulated

the problem as a general integer programming problem and proposed a decomposition approach using dynamic
attempted to use a commercial product to obtain the optimalas

attmptd t ue acomercalprouctto btin he ptial an approximate dynamic programming technique where the
solution. Unfortunately, it was also unable to compute the a prxmt yai rgamn ehiu hr h
optimalsolution. Unfoertanaly, ios alof l computen t hme. value that could be attained from unassigned resources is
optimal solution after many hours of computation time. stt .Teeape rvddso htti prahi

Usin (2, w se tht t detrmie te nmbe of set to 0. The examples provided show that this approach is
computationally feasible for some fairly large problems and
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that it obtains solutions that are very close to the optimal for
some simple value functions. Ongoing work includes
extensions involving more complex value functions that
may require assigning approximate values to unassigned
resources in order to obtain high quality solutions.
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